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ABSTRACT

This paper illustrates the use of graphical analyses by pre-

senting the solution of six problems in the fields of operational

analyses, mechanics, and engineering: Thp Jeep Problem, the Range

of a Fleet of Aircraft, a Beam under Combined Compression and Trans-

verse Load, the Problem of Car Replacements, Determination of Bal-

listic Trajectory Parameters, and the Two-Magnetic-Reactor Problem.

The purpose of this paper is to arouse an interest in a meth-

odology which is further enhanced by the graphical display capa-

bility available in todayts computers with all its potential prob-

lem solving flexibility. The examples treated in this paper are not

the stereotyped problems forming the usual subject of textbooks on

graphical methods and, in that sense, should prove of greater in-

terest to the reader.

v



I

f CONTENTS

I. Introduction 1

II. The JeeD Problem 5

III. Graphical Solution to Example Problem No. 1 13
(The Jeep Problem)

IV. The Range of a Fleet of Aircraft 21

V. Graphical Solution to Example No. 2 (The Rance 29
of a Fleet of Aircraft)

A. Case of Aircraft with Equal Speeds 29
B. Case of Aircraft of Different Speeds 35

and Efficiencies

VI, Graphical Solution to Example No. 3 (A Beam 37
Under Combined Compression and Transverse Load)

• A. Precise Bending Moment 37
.6. Precise Shear 40
C. Maximum Bending Moment 41
D. Deflections 41
E. Example Showing Application of the Method 43

VII. Graphical Solution to Example No. 4 (The Problem 45i of Cir Replacements)

VIII. Graphical Solution to Example No. 5 (Determination 51
of Ballistic Trajectory Parameters)
A. Ballistic Trajectory Construction 52

B. Determination of Speeds and Times Along the 53
Trajectory

C. &U3e of Logarithmic Scales for Determination of 55
Speeds and Times

SD. Times 55
E. Example 57

IX. Gra..i cal Solution to Example No. 6 (The Two- 59

Magnet ic -Reactor Problem)

A. Method A: Graphical Solution 60
B. Application of the Method 67
C. Method B: Grapho-Analytica) Solution 72

X. Conclusions 79

Appendix A. A New Application of the Logarithmic 81
Polar D.A'agram

"Vii



I

I. INTRODUCTION

Graphical solutions have not been popular in the United States;

and now, with the widespread use of computers, it may seem even more

a remote possibility to arouse interest in a skill not widely employed.

Or the other hand, the graphical input and display capability and

computer processing of graphical information may yet foster the ac-

ceptance of graphical solutions and prove to be a tool to train

graphical visualization.

This training is as important as the training in any other math-

ematical symbolism, without which the shorthand of operations and re-

lationships would remain as hieroglyphics before discovery of the

Rosetta stone. A quite natural question would be to inquire as to

the reasons for previous lack of enthusiasm for graphical solutions.

That may have been due to many causes. lack of training in the use

of graphics; the hard-to-understand disdain of engineering students

of their own language--the language of drawings; the preponderance

of analytically minded mathematicians to geometers, etc. The princi-

pal cause, however, may have been unfounded fear of the lack of ac-

curacy of graphical solutions. I say "unfounded" because more often

than not the accuracy of a graphical solution is amply adequate, even

without having to alibi it by mentioning the underlying assumpt4.ons,

physical constants, and other factors which preclude cur precise

knowledge of a given physical phenomenor..

The virtue of a graphical approach i3 twofold: a diagram often

suggests to a trained mind a solution, -ut in all cases contains a

visual interplay of variables indicating their relative importance.

In that sense alone, I feel justified in quoting Oliver Heaviside--

although his statement was unrelated to graphics--that there is no



better way to prove a fact than to show it to be a fact. Here the

use of the words "to show" is intended to convey an idea of a picture,
a diagram; but, of course, to a trained mind a shorthand symbol is

just as clear.

I have selected from my experience six problems--one as recent

as this paper, some going back to my early work in aircraft engineering.

Each of the six example problems selected was chosen to demonstrate an

approach, to make a point, and to illustrate the solutions of practi-

cal problems encountered in practice.

The first two problems, the jeep problem and the range of a

fleet of aircraft, were selected because their analytical solutions

as offered in mathematical literature did not suggest that equally
accurate, and in fact rigorous, solutions were possible using consid-

erably more elementary graphical approach. The solution to both of

these problems is approached by drawing diagrams showing the relation-

ship of the fuel consumed as a function of distance, and in the jeep

problem, the direction of travel. The actual solution becomes under-

standable by proper juxtaposition of lines and figures.

The third problem, that of a beam under combined compression

and transverse load, illustrates the reaction of a mind disposed toward

graphical approach. The expression of the bending moment for a beam

under combined compression and transverse load had been derived long

before I found it necessary to use it. Also, its use was widespiaad

in those days because airplanes were biplanes, and in wing construc-

tion one used routed wooden spars. The critical design points were

not obvious; to verify the adequacy of design, the stress analyst used

his desk calculator to arrive at the bending moments and shears and

nhysical properties of the spar cross section to verify local factor
of safety. It was perhaps natural that with ay preference for graphics,

that type of solution suggested itself because of the trigonometric

nature of the analytical expression of the bending moment. In reality,

of course, these functions represent the limiting magnitude of appro-

priate infinite series.
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The fourth problem, that of car replacements, once more offered

an illustration of how by drawing a diagram showing the relationship

of a number of cars, their ages, and stipulated change of their mean

age after a specified period, the solution suggested itself. Of course,

the problem as posed and its solution are based on the assumption of

linear variation of car ages and the discarding of oldest cars to ar-

rive at a new mean car age. The finding of the answer requires carp-

ful examination of the diagram and the ability to recognize unimportant

inaccuracy in areas being balanced to find the location of the solution

line.

The fifth problem, the determination of ballistic trajectory

parameters, is interesting because it calls for the application of

several disciplines and because it demonstrates that often the fear
of a graphical solution's not being accurate enough is ill-founded.

This example problem shows comparison of the results obtained graph-

ically, analytically by the use of a desk calculator, and finally

those arrived at from a computer program. It is significant that

even the apogee velocity, which graphically is obtained as a differ-

ence of two relatively large numbers, differs by less than one percent

from the computer answer. This is amply accurate, considering the

fact that in this particular case the assumption of a trajectory in

vacuum and a nonrotating earth were considered acceptable for the
purpose for which the problem had to b'c soved. The additional inter-
est of the solution resides in the use of logarithmic coomdinates em-

ployed to save certain arithmetic calculations.

The two-magnetic-reactor problem, the sixth problem, is an

illustration of a problem whose solution was entirely intuitive. I

assume that unless once is inclined to think graphically one would

have difficulty in sensing the steps which led one to the eventual

solution. On the other hand, once there was a graphical solution its

transformation to a grapho-analytical form, a simpler and more elegant

formn, became clear.
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Appendix A contains my extension of the use of the logarithmic

polar diagram of an airplane proposed and used by me as a young engi-

neer. It is reported here because it is the original use of the log-

arithmic scales by Mr. Rith that started me on their use and interest 3
in graphical solutions in some of my analytical work.
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II. THE JEEP PROBLEM*

N.J. Fine, Washington, D.C.

1. Introduction. The problem in logistics with which this paper deals was
proposed to the author by Gail Young and Ivan Niven, both of Purdue Univer.
sity, in the latter part of 1945. The original source is unknown to, the author. At
that time Niven had obtained a partial solution based on certain assumptions.
After the first submission of this paper it was learned that L. Alaoglu had also
obtained a complete solution. He mentioned that s~milar problems had arisen
in air trwusp(rt operations in the China theater. It has also been suggested that
there may be applications to Arctic expeditions and interplanetary travel. This
paper, however, will confine itself to the lowly jeep.

Suppose that a jeep can carry a maximum load of n gallons of gas and can
travel c miles per gallon. The jeep is required to cross a debý'rt x miles wide. Our
problem is tn prescribe a method for making the journey most economically and
to find the least sufficierit amount of gas. It is not obvious that such a methoci
exists, and it would be more exact to speak of the greatest lower bound, until the
existence of the minimum is established.

We shall assume that n and c are toth unity. This involves no loss of gen-
erality; it is equivalent to taking as our unit of distance sc, the number of mifes
that the jeep can travel on a full load.

If x 6 1, the problem is trivial. If x exceeds 1, however, gas d!_,mps will have
to be established at various paints along the way. It will Jýe convenient to take
the path of the jeep along the positive x-axis, starting at x and ending Vt the
origin. The gas dumps will then form a subdivision or of the interval (0, x):

er: 0< Z,< z%< ... <X, < X.

in which the x, denote the positions of the dumps (assumed to be finite in num-
ber). If s is any non-negative number less 'han z, the subdivision 4r induces a
subdivision of (0, s) by deletion of all the stations to the right of s. There will
be no ambiguity if we refer to this induced subdivision by the same symbol, @.
Other subdivisions will be denoted by ir', s, and so forth. If all the stations
(points of division) of e are contained among the stations of a0', we shall say that
a' is a rfi=.menI of a, written a' <a,.

We may now rephrase our problem. Once a subdivision is fixed, the amount
of gas required is still a function of the method of establishing and employind its
stations. We shall denote by f(., vr) the greatest lower bound of this amount for
all possibie methods, and by f(x) the greatest lower bound of f(., w) for all poe-
sible subdivisions or Our task is to discover the form orf (z).

In 12 we introduce the slandad method of establishing and using the sta-
tions of a given subdivision v, and we prove that this method is at least as eco-
nomical as any other. This enables us to determL-eJ(z, e) in 13. A rather &ur-
prising application of the standarnd "'"thod leads to the resuit (14) that if
r' <#, then fly, -') f(x, 0). In 15 we determine criteria for non-ir-provement

ieproduced by perrmission of the publisher.
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by refinement. These criteria lead us to the construction of an optimum 0' and
to the explicit representation of f(x, 0') -f(x) (16). In J7 we derive a simple and
accurate asymptotic formula for f(x). The last section is devoted to a few re-
marks, including a comparison of the exact solution with the result obtained
by considering the stations equally spaced (one of Niven's assumptions).

2. The standard method. One very natural method of employing the
stations of a given o is to build up the stockpile of gaboline at x, by making all the
trips between x and x, before gcng to to x,-., and to continue in this way
throughout the journey. In other words, once we go beyond any station ri we
never return to the preceding one, x,+,.

Suppose that, by some other method, m complete round trips are made
starting at x, followed by a last, one-way trip from x to x,. The ith one of the
round trips consists of A,, the one-way trip from x to x,; Bi, the round trip start-
ing and ending at x,; and C,, thz! return trip from x, to x. Let g, be the amount
of gas in the jeep at the start.of-A,. Since 2(x-x,) is the amount used in per-
forming trips A, and Ci, the amount g,-2(x-x,) plus the residue of the pre-
ceding trips is sufficient to perform B,. If we replace the sequence A&, Bt, C,,
As, Bt, C,, • , A,, Be, C.,, A.+,, by A&, C,, As, CG, , A,,, Ca, A,+,, and
deposit at x, the amount g,-2(x-x,) after each Ai(i=1, 2, .., M), and
g.+,-(x-x,) after A,+,, we shall then be in a position to perform all the B, in
exactly the same order as before. When this has been done, the final configura-
tion will not have been altered and no'more gas will have been used. The same
reasoning applies to all the trips starting at x,, and so, by induction, the stand-
ard method is established as being at least as economical as any other. Hence-
forth we shall assume its use.

3. Determination of f(x, a,). Now we suppose that there is given a sub-
division

or: O- <s <... <X< +tts,

and that f(xii, w) has already been determined. Cleary f(xa, -) =-0, so we have
the initial step in the inductive definition of f(x,, a,). Let k, be the number of
trips to be made from x, to xi-. Obviously ki" 1. No gas is to be left behind at
x,, since that would imply waste. Hence the difference between f(x,, 0) and
f(x,-., a) must be accounted for by the amount used in the 2k, -1 trips between
the two stations. Wrting A,.xs-x,-,, we have

(1) f(x., 4) - f(x._.i, a) - (2k, - 1)4, (g - 1, • • •, r + 1).

We must now determine k,. The maximum amount of gas that can be trans-
ported on each of the first k,- I trips is I -2A,; on the last, 1 -A,, since there is
no return. The total must not be less than the amount required to proceed from
X,-j. Hence

(2) k,(1 - 2A,) + A, Af(z,-,, 4').



From (1) it is clear that the number of trips must be as small as possible so that

(3) (k, - 1)(1 - 2A,) 4- A, < j(x,- 1, a,),

provided that k,> 1. It is easy to see that k,= 1 for xtg I, and that f(xg, o) =x,
in this case. If x,>1, we have k,>1. In this case, (2) and (3) determine the
integer k, uniquely, and f(xi, o) is then obtained from (1). We remark that if the
equality

m(1 - 24,) + As f f(xz.-, r)

holds for some integer m, then k, f=m.
We shall now deriv:e a useful reiationship between k, and f(x,, a). If we elim-

inatef(x,_., a) between (1) and (2), we have, for all tg 1,
(4) k, ý;_/(x,, a,).

Similarly, (1) and (3) yield

(5) k, - 1 < f(xt, a),

provided that ks > 1. But we see directly that (5) is also valid for k, = 1, so (4)
and (5) hold for all I a1. If we define {a} as the least integer not less than a,
then for all I Ž I we may write

(6) k, = If(x,, )}.

Sincef(z, o) is an increasing function of z,

(7) k, ;5 k1+4 , I • 1.

Summing (1), we obtain
r+1

(8) f(x, ,) = ý (2k, - I),&.
a,-i

4. Refinements of subdivisions. Let a' be a refinement of i. The quantity
f(x, a) may be thought of as the result obtained by applying a non-standard
method to a', namely, passing over those stations of o' which do not belong to a.
It follows immediately from §2 that f(x, a') is not greater than f(x, a), that is,

(9) f(Ax, ') f(x, 0) if a' < C.

If (xI- 1 , x,) is an interval of a, with the associated parameter k,, and if
(x41 =yp, yO). (yb. y, • (y,-, y,-x.) are intervals of a', with parameters
k', k", , k(P), then

(10) k,(P),- 1/(x,, , 5 a) k,,.

Using (7), we obtain

(F1) (8 , h" 6 S k(l) ;5 k1.
From (8),



I p
(12) f(x,, a') - f(x-.1 , a') - I (2k") - l)(y, - y,-I}.

Equation (1) may be written in the form
p -. b

(13) f(xa, 0) - f(x,_i, a) = ,(2k, - 1)(y, - yi-I).

Subtracting the members of (12) from those of (13), we have
p

(14) f(x,, a) - f(x,, V) - f(x•,_, o) - f(x,_., c') + 2E (k, - k"V (y, - y,-I). *

j-i

We observe that all the differences in (14) are non-negative. F-om this we deduce
that actual improvement by refinement takes place if and only if we can find an
interval (x,_i, x,) and an integer i such that k,>k€0. By (11), this is equivalent
to k,>k'. Y

5. Properties of a*. Our problem will be solved if we can find a subdivision
C* for which

(A) f(x, 0") _ 9(x, 0) for every a.

We can bring to bear the results of §4 by proving that any o* which satisfies
,A) also satisfes (B) that follows, and conversely. -

(E) f(x, a*) = f(x, a') for every a' < .

Clearly, (A) and (9) imply (B). Conversely, suppose that (B) is satisfied, and
let or be any subdiv;sion whatsoever. We choose for a' the common refinern !nt of
c and o*. From (B), f(x, 0*) =f(x, a'); another application of (9) shows that
f(x, o,') ý_f(x, a). Combining these we obtain (A).

Using the criterion established at the end of §4, we find that (B) is equivalent
to

(C) For every t=1, 2, . . ,r+1, and for every y such that xe-i <y;Sxs

k'Y If(y, *)I = k, = If(x,, *)).

We shall now show that (C) is equivalent to (D):

(D) For every m - 1, 2, • • • , Lf(x, 0*)], there exists an integer s such that f(x., 0*)
=M.

Suppose first that (C) fails for some t and y. Since f(s, 0*) is strictly increas-
ing,
(15) /(x,-t, 0r) < fAy. 0).

B\' the definitions of k' and the function I II

(16) A(y, a*) ;S V.



Since (C) fails, k' <ks, that is,

(17) k' S k,- 1.

Finally, since k, = if(x,, 0)) carnot exceed f(x,, 0') by as much as unity,

(18) k, - I <f(X,,o 0).

Combining (15), (16), (17), and (18), we see that the integer k' lies strictly be-
tween f(xI- 1, 0*) and f(xt, 0). By monotonicity, k' cannot be equal to f(x,, 0)
for any s, so (D) fails.

Conversely, if m is an integer satisfying

(19) f(x,_, 0*) < m <f(X,, 0),

we can find a number y such that

(20) f(y, *) 0 -

and (C) is violated. To prove this, set
M - A~X,- ,, 0*)(21) y X,-+ 2m - ,

2m - 1

and let A =y-x,.i. Clearly A is positive, and

(22) m(l - 24) + A - f(x,-.-, *).

Referring to the remark in 13, we see that m is the parameter associated with
the interval (xi-1, y), and

(23) f(y, 0*) - f(xa-,, 0P) + (2m - l)(y - X,-I) - m,

which proves (20). This completes the proof that (D) is equivalent to (C), (B),
and (A).

6. Constnrction of 0*. It is now almost trivial to construct a 0* satisfying
(D) and therefore (A). Merely choose the stations x,* so that f(x,*, 0*) =t.
Clearly this can be done for I = 1. Suppose that x,•, x,_ have been found.
We must determine x,* by

(24) k, - {X(ze,,*)j - I,
(25) f(s$, "') -- f(zx.z, 0*) - (2k, - 1)(xe" - x,..).

The left member of (25) equals unity; hence

(26) zs' - _- (29 - I)-'.

Therefore

(2)1 1 1
(27) + 3 + + + 21"- I

9
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It is easy to verify that (27) leads to the required equations k1=f(x,*, 0)=t.
The subivision 0' so determined evidently satisfies (D). If r is the greatest in-
teger for which x,* does not exceed x, we may write
(28) f(z) - !(x, 0') -,r + (2, + 1)(z - xj*), "

and

(29) 0 S: zx- * < (2r + I)-'.

It has now been shown that f(x), which represents the number of gallons
needed to take the jeep x miles, is a function which is piecewise linear over in-
tervals of length 1, 1/3, 1/5, 1/7, and so on, the slope of the graph over the nth
interval being the nth odd number so that the function takes consecutive in-
tegral values at the corner points.

7. An asymptotic formula forftv). From equation (1) it is possible to get a
rough idea about the order of magnitude of J(x). We have approximately

A- (2k -. 1),x,

k f(x).

Neglecting the -I compared with k, we find

Af - 2Az

f
log f - 2x + C1,

f M Cle'.

We shall not attempt to make these heuristic methods precise, but shall pro-
ceed directly to a derivation based on the exact solution obtained in the pre-
ceding section. Let us define

1 1 1
(30) S(r) 1+ + + " +-r

It is well known that for large r,

(31) S(r) - log r + C + - + 0-,
2r r

where C is Euler's constant, .577 . , and the O(l/rs) denotes an error term
whose absolute value does not exceed a certain constant, irdependent of r, multi-
plied by I/r', This constant may vary from one equation to the next. From (27),
(30), and (31), we have

-P S(2r) - s(,) log (2r) + C + +,

(32) - log, + +-c + r

10



Therefore,

Xlog (2-.,/r) + -C+OI1

2
Taking exponentials,

(33) exp (Z*- 2- 2-V' exp ~o(0 ) 2,Vr (1 +0 2)
Squaring, we obtain

(34) 1 exp (2, - Q. r. +

Thus, writing g(u) = j exp (2u - C),

(35) f(;*) -, - g(,') +0 (-) - g(x,) + o(e-,').

Now for any u satisfying

'36) e<a;
we have, by equation (28),
(37) f'(u) - 2r + 1.

Also,

(38) 9'(0) -2g(u) > 2g(x,.) - 2, + 0 (T,
(39) 9'(u) < 2g(xe41) - 2r + 2 + 0 ()
(40) if(u) -- g'(u) = 0(1).

Integrating (40) between x* and x, we find

fAX) - g(x) -(f(4r) - e~x")) +f(f'(u) - g'(u))du
(41)ft (+)±(X. *) M (+)

-f 0(C-"8).
Therefore, for all x,
(42) A(x) - j eip (2: - C) + O(-").
It will be observed that the error term is not only of lower order than the prin-
cipal term, but it actually tends to zero exponentially. Also, the approximate

ii
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equation derived by such high-handed methods at the beginning of this section
turns out %o be much more accurate than might have been expected.

8. Remarks. Suppose we decide to use equal subdivi:ions of the interval
(0, x), N in number. We can prove that if N is chosen to vary with x so that
x2/N tends to zero, then the increase in the amount of gas required (over the
exact solution) is less than 50% for large x. To counterbalance this increase, -.

however, the number of stations required will be very much smaller. For exam-
ple, if N varies as the cube of x, it will also vary as the cube of log r. Hence, if
we take into account the cost (in time, energy, material, and so on) of setting
up the stations, it might very well happen that the equal subdivisions would be
more economical. Of course, we should then have an entirely new problem.

For a fixed x and sufficiently large N, we can come as close as we please to
the minimum f(x) by means of N equal subdivisins. An amusing fact here is that
the minimum can be attained if and only if x is rational.

We close with several remarks about the character of the solution a* we have
obtained here. It is obvious that this solution is not unique, since every refine-
ment of a* is also a solution. It can be shown that the converse is also true; that
is, every solution is a refinement of a,*. Furthermore, if we consider the class of
subdivisions a, for which the function f(x, a) is continuous, we can prove that this
class is identical with the class of all solutions. It would be of interest to see
whether this criterior can be obtained directly, and whether the minimum f(x)
can be derived from it.

12



III. GRAPHICAL SOLUTION TO EXAMPLE PROBLEM NO. 1 (THE JEEP PROBLEM)

Postulates for optimum solution are:

1. The number of trips between two consecutive stations is

always odd.

2. The graph of the fuel consumed during the entire trip,

viewed from the terminus, is a series of straight lines

having a continually increasing slope.

3. To obtain maximum efficiency, the jeep must always ini-

tiate each trip to the next dump station fully loaded.

Consistent with Dr. Fine's choice for n and c, we take n = c = 1.

This means that if the ordinate axis is c when the abscissa axis is n,

a 45 deg line gives the relationship between miles traveled and fuel

consumed.

Figure 1 graphically portrays the relationship between possible

fuel dump locations (c n), fuel consumed in traveling between each pair

of proximate points (CnFn, FnFn), and fuel available after a single

trip between each such pair. The word "possible" in specifying the

fuel dump locations and the figure are drawn consonant with the post-

ulants I and III and Dr. Fine's choice for n and c.

13
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Examining Fig. 1, we can see that segments F F' represent the
n n

quantity of fuel which ..an be deposited at the fuel dump and still

leave enough fuel (F'F") to travel back for the next fuel load pickup.
nfn

Thus, if the fuel dump is located 1/3 of the range from start, a

round trip consumes 2/3 of the range, resulting io the deposit at the

dump being 1/3 of the range. A trip to the dump without return per-
mits deposit of 2/3 of the range.

Similarly, if the distance between dumps is 1/5 range, the

round trip permits deposit of 3/5 of the range, while the last single

trip makes it possible to deposit 4/5 of the range.

The efficiency of depositing fuel, i.e., the ratio of the de-
posited fuel to that consumed in the round trip, increases as the

distance between fuel dump points decreases.

F7" F" F F" F2"

F 75 ______

FF2

F-,, II /F

C5

C"2--- -o .... .. . ..

$*.- 14.-W

FIGURE 1.

'14



We now proceed in Fig. 2 to construct a graphical solution of

a possible relationship between fuel requirements and locations of

fuel dumps for ranges exceeding that of the jeep. Consistent with

postulate III, we start at the terminus and establish fuel dump pre-

vious to it as bei-J:g a full jeep range away. The triangle OAF estab-

lishes the relationship between fuel consumed (the ordinate) and dis-

tance traveled (the abscissa). The location of the nearest fuel dump

can be inferred from the observation that, consistent with postulates

I and III, x = 1/3 is a logical contender for the preferred distance.

T. 'e figure shows the three trips involved in the transfer and estab-

lishes the sufficiency of point F3 as a solution.

Tota I
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A 2n

n= 2L 4 -F 3

Fuel
deposited

= 2n/B

n

AtA: AF=n A 2 +A3A

At B: 88 3+ '732n 3

3 33

n 1i.0 Return froam 3

A toA 0

Fuel
deposited
/F/3

AI Lot trip

from B
to A

A

Jecp ,u,,• C I C/3 41
Ditance

F4- G-44-2F;GURE 2.
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One observes now that the next fuel dump must contain sufficient

amount to permit the deposit Lf two full ranges* at fucl dump 1/3.

This requires preferably increased efficiency of fuel transfer. Thus,
it is logical to assume the new fuel dump location somewhat closer,

which suggests the point 1/5 as the choice. In Fig. 3 it is readily

established by drawing the appropriate 45 deg lines representing the

trips between the 1/3 point and the new point that five such trips

consume one jeep range while affording the deposition of two ranges

at point 1/3, thus producing point F Using similar reasoning, we

construct points F7 , F9 , etc., corresponding to progressively de-

creasing distance between fuel dumps.

Thus, we have arrived at a solution which is consonant with our

three postulates.

Now we shall endeavor to prove that this solutLion represents

the preferred solution.

The 1/3 range distance seems to be so logical that it is reason-

able to question the introduction of the 1/5 and 1/7 fuel dumps. As

"a test we will eliminate fuel dump 1/5 and replace fuel dump 1/7 with

"a new fuel dump located, from fuel dump 1/3, a distance of another

1/3 range. Figure 4 shows that this choice of a new fuel CIfmp penal-

izes by one full range--from 7 to F'--not even considering the slight

loss of the distance.

Itt

T.-.e word "range" is used here to designate the amount of fuel
needed for that distance.
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n = 5 ... . 9
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Similar tests (Fig. 5) will readily prove that fuel dump loca-

tions closer than those originally chosen in conformance with the

stated postulates will not affect the fuel requirements but will in-

crease the number of trips, while locations greater than the original

ones will result in severe penalty of the required fuel.

This illustration proves that there is no
need to have an intermediate cache of F3
fuel between A and B because it saves 7
no fuel, but merely increases the number
of trips.

-o -

0

'- - -0

F,

• , a

00 < - 4

43 X

of -

Terminus A A. 5

FIGURE 5.
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Thus, we conclude that fuel dump locations 1, 1/3, 1/5, 1/7,

1/9, 1/11, etc. result in the optimum, i.e., a minimum amount of fuel,

but not a minimum number of trips. This fact is summarized in Fig. 6.

Sn

4.1

3n

2n

Fusl

+ .,/3 +,/5±,/*3ý;'

FIGURE 6.
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IV. THE RANGE OF A FLEET OF AIRCRAFT*#

J. N. FRANKLINt

1. Introduction. The problem discussed in this paper is to determine the

range of a fleet of n aircraft with fuel capacities gi gallons and fuel effi-
ciencies ri gallons per mile (i = 1, . , n). It is assumed that the aircraft
may share fuel in flight and that any of the aircraft may be abandoned at
any stage. The range is defined to be the greatest distance which can be
attained in this way. Initially the fleet is supposed to have g gallons of
fuel.

A theoretical solution is obtained by the method which Richard Bell-
man [11 calls dynamic programming. Explicit solutions are obtained in the
case of two aircraft with different fuel capacities and fuel efficiencies and
in the case of any number of aircraft with identical fuel capacities and
identical fuel efficiencies.

The problem is similar to the so-called jeep problem. The jeep problem
was solved rigorously by N. J. Fine [2]. A solution was also obtained by 0.
Helmer [3, 4]. Fine cited an unpublished solution by L. Alaoglu. The prob-
lem was generalized by C. G. Phipps [5]. Phipps informally developed the
special result which is deduced in 1 4 of this paper.

2. A recurrence formula. Let C., be any subset of m of thegiven n aircraft.
Mathematically C., may be represented by a subset of m of the first n
positive integers. Let M(g, C.,) be defined as the range of the fleet of m
aircraft C., starting with g gallons of fuel. Then the required range of the n
given aircraft is M(9, C.), where C. = 11, 2, ... , n). When there is only
one aircraft,

(1) .l1(g, CI) = min(g/r,, g,/r,),

where C, consists of just the ith aircraft.
When there are m > 1 aircraft, a distance x is flown by all m aircraft.

Then one aircraft is abandoned, leaving a subset C.,-I C C. - It is un-
necessary to consider abandoning more than one aircraft at a time. For
example, the effect of abandoning two aircraft from C. may be obtained
by abandoning one of the aircraft from C., and then immediately aban-
doning the second aircraft from C.,- . After the distanet x the amount of
fuel remaining is

(2) g = -

The greatest distance which can be attained by the remaining aircraft

Received by the editors August 2D, ItM5 and in revised form March 17, 190.
t California Institute of Technology, Pasadena, California.
# Reproduced by permission of the publisher.
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C,.-1 starting with h gallons of fuel is M(h, Cm.-.). If g, C., and a are
prescribed, the subset C.-. should be chosen so as to maximize the remain-

ing distance M(h, C.,.-). The total distance traveled will then be

(3) x + maxc,,_.cc,.M(g - .r. r,, C,.-1).

The maximum distance M(g, Cm) is obtained by maximizing the last
expression with respect to x. In other words, if g is .< the total capacity

for i in C,,

M(g, C.)

= maxz.,/zc,. ,, [x + maxc._,cc. M(g - XC., rT, C.-4)j.

In this maximization it is required that x be $ g/ "r,, sknce this is the
greatest distance which all m aircraft cs.n fly with g gallons of fuel before
one aircraft is abandoned. If g is given in excess of the total fuel capacity
'g, of the aircraft in C,., then some fuel must be thrown away and

(5) M(g, C,.) = M(E',. a,, C,-) (g > EcC g,).

The recurrence formulas (4) and (5) uniquely determine M(g, C,) for
all subsets C,. with m = 2, 3, ... , n. It is easy to see that each function
M(g, C,.) is polygonal in g, i.e., continuous and piecewise linear. In iact,
(4) may be rewritten, by the identity (2), as

(6) M(g, C.) = maxS, Ina(g - h) + maxc,,_,cr. M(h, C,,_)],

where a = 1/ _crc. r,. We know from (1) that every function M(g, (Cl

is polygonal. Let us suppose that every function 31(h, C.,_) is polygonal.
Then

(7) P(h) = maxc,cr. A M(h, C,_.)

is polygonal, since it is the largest of a finite number of polygonal full

tions. Now (6) takes the form

(8) M(g, C,.) = ag + maxA• I-ah + P(h)),

Since -ah + P(h) is polygonal, its maximum value for h ;j g is a poly.

g(nal function of g, say P*(g), and therefore Al = ag + P*(g) is alsoý
polygonal This completes an inductivi proof that M(g, C.) is polygonal
for g $ .g,, within which range (8) holds. It now follows from (5) that

M, g, C.', is polygonal for all g. Incidentally, the identity (8) shows that
tIg. C', i. steadily increasing with rae * a = l/,,cr.. r, whcoi

q ir '"travr values of g, (5) shows that Al is constant.
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3. The case of two aircraft. Let

" M(g) = "11(9, ('2), M,(g) = M(g, C1) (C1 = i = 1, 2).

1 g5 1 + g2, (8) takes the form

(10) M(g) = ag + maxh50 [-ah + P(h)],

where

(11) P(h) = max, 1 , 2 Mj(h), a = l/(r, + r2).

By the identity (1),

(12) M.(h) = min (h/ri, g./,.) (i = 1, 2).

Without loss of generality it will be assumed that r1 _ r2 .
Case 1. Suppose that gi/r, > g2/r2 . In this case

(13) P(h) = MI1(h) (for all h).

Then

)ah + 1(h) ah + h/r1  (h : gi)

S-ah + g 1/r, (h Ž_ gi).

Since a < 1/ri, itr follows that

( -ag + g/r, (g ;5 gi)
(15) l)*(g)= Ia+i/ (.g,I !--ag, +1 gi/ri (g -- gi),

where P*(g) = max [-art + i(h)] for h _- g. From (8) it follows that

g) r1  (g - gi){ a(g - gi) + g,/r, (1 - g _- g1 + ga).

For g > g1 + g2, equation (5) gives

(1 M(g) = ag2 + g11/ri (g > g, + g2).

From the definition (2) of the remaining fuel h as a function of the dis-
tanoe x to be traveled by both aircraft, it is clear that the optimal procedure
in Case I is to use just aircraft I if g ;5 g,, or if g > g, to use both aircraft
until only g, gallons of fuel remain and then to complete the trip with just
aircraft 1.

Case 2. Suppose that gl /r, < g,/r,. In this case

(h/rI (h ;5 g,)
S,11r, (y/, h g*)
h lr2  (g* h • gi)

Ig1/r, (h i_ gi)
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where v* = r2 1/ri is the abscissa of thel point of intersection of the graphs
of MI(h) and M2(h). The function -ah + P(h) is a poiygonal function
with peaks at h = g1 and h = g2. There are two subcases, depending upon
whether the first, peak is higher (A) or lowrr (B) than the second peak.

Case 2A.. Suppose that, gi/r1 < g2/r2 and gi/r,2 > g2/r2'. Then

W -op + g/i, (g :_ gp)(19) I)*(g) = -• ,r) ( _g){-api + p/r1  (Y k ai),

and, as in Case 1, M(g) has the furm (1W), (17). The optimal procedure in
this case is the same as that in Case 1. 2 2 2t

Ceae 2B. Suppose that gi/r, < 92/r2 and gil/r1 < 9q2 r2
2. Let g'= g=r2 /r I

this is the first value of h > g, at which -ah + 11(h) = -ag, + 11(9p).
Then F- aO+ /ri (p _•p,)

-ag• + g),ri (gq ;5 g • g)
(20) P*(Y) = j-ai + g/r (91 < Y < V")

j-aq +g/r2 Yg' :_ 9 :_ q2.

-- 19.. + g2/r., (g p g.1).

Therefore,

F /ri (g ! gi)
(21) .1(g) =a(g - gi) + gp!r, (g, _ p __ V')

g/rl( (' 5 g 5 9 )

a(g - 92) + p2!r2 (pg2 g ;_ + ),

and, according to equation (5),

(22) M1(g) = ay, + !,r., 2( > gp- 4-

The optimal procedure is as follows. If g < ,, use only aircraft I. It'
gi 5 g 9 g', use both aircraft until only yj gallons remain; theti Use ju-t,
aircraft 1. If U' ;5 g _ 92, use only aircraft 2. If g2 • g L gi + g2, u.,c
both aircraft until only 9! gallons remain; then use just aircraft 2. Ift y
> gP + g.2, some fuel must be thrown auay, and the trip is made wilh
9 = Yi + g. as descritbd ini |ie ipreceding sentence.

From these results it is apl)parent that in the getnertl vase of nt aircnriti
the optinial policy will depend in it co•iliczttled Nay upon y as well :iý
upon the g, and r,. For example, the value of m may determine which iit
the aircraft finishes the trip.
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4. The case of identical aircraft. Let

(23) p, = G, r, R (i 1, ),

and let .11,,(g) = 11(g, C.) (m = 1, , n). In this case the recurrence
formulas (4), (5) take the form

(24) 31,,(g) = max,/,,,n Ix + M,-1 (g - MtRX)I (g -< mG),

(25) l1/,,(q) = M,((mG) (g > mG).

It will be showa that, if k = !g/G], the greatest integer !_5 g/G,

(26) . (q) = I) +g - kG (g <= mG, k

(27) M.,(g) = G ( + ++ ... (g > mG().

The right-hand side of (26) is defined as g/R when k = 0. In the optimal
policy, if g = kG : ?n;, the trip is begun with k aircraft. If kG < g
< (k + I )(G < mG, the trip is begun with k + 1 aircraft. If g > mG, then
g - nG gallons of fuel must hE thrown away, and the trip is begun with
all m aircraft. h, any case, if the trip is begun with K aircraft, the first
aircraft is abandoned whei only (K - I)G gallons of fuel remain. Then
K - 1 aircraft are flow'n until only (K - 2)G gallons remain, and so on.

This result can be (.ta )lished by induction. If m = 1, formulas (26)
and (27) become

(28) -111(g) = g/R (g 5 G),

12) .11(g) = GIR (g > G),

Nwhich is correct ac'( r'dng to (1). Assume that t'e result holds for m - 1
aircraft. Then

d/ 1

(:30) d '0.1 ) 'a (0 < h < (m - 1)'G)(T)= (in OR)/

:i all points h a ' .hiAi the polygonal function .11-,(h) has a derivative.
'T'hcrefore, x + .11 .iq -" mRx) is a steadily decreasing function of x for
() < x g g,/mi? If - I)R. Settingx .r 0 in (24) gives the maximum

(31) .il,(g) = Mmi(g) (g 5 (M - 1)GO.

lint .1 ,(g ) i-. i'\,o, 1y the right-hand side of (26) for all q = (?n - I)G.

"i'oirevfore, (26,1 s vsablish,,d for g _5 (On- )G.

Next ."l)'"' that (i - I )G' < g 5 m(;. Then .. _,g - YnRx) is

(10 Ista|nt for ; i-lhx - 1)G; for larger value- of x the rate of in-
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crease is ; -mR/(m - I)R < -1. Therefore, the maximum (24) is
attained when g - mRx = (m - l)G, and

M.(g) g - (m - 1)G + Af,,((m - 1)G)
mR

(32) -(m- )G+ G I+ + I

mR R + 2 ... ,,,_ . ..

This establishes the result (26) for (m - 1 )G < g ;6 mG. The result (27)
for g > mG follows from (5).

5. An asymptotic formula for g. The solution (26), (27) in the case of
identical aircraft is similar to the solution of the jeep problem, although the
solutions were established by different methods. In this section an asynip-
totic formula will be developed for the amount of fuel g which is necessary
in order to transport identical aircraft a distance .r. Let g = f(x). It will
be shown that
(33) f(x) = A(x) + O(exp (-Rx/G)),

where

(34) A W) = G( I + exp(J R ))H (_

In these identities G and R are the fuel capacity and the fuel efficiency of
each of the aircraft, and C is Euler's constant, .577. ... This result is
comparable to Fine's asymptotic formula for the solution of the jeep prob.
lem [2].

From the result of the lat section it is clear that x is the range of n + 1
aircraft with initial fuel supply g, where nG < g ; (n + I)G. Setting
m = n + 1 in (26) gives

(35) x-x + (+I)R'

where

X*0 G .+ I+ ... +

(36) +)
=G (log n+ C+ 1n. 0

This well-known asymptotic formula is derived in 16, p. 5291. From (36) it
follows that

(37) exp - c) - nexp I-+ 0 n+ 1+ 0
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This relation shows that

(38) n * constant + exp (-- ,

(39) O (exp (-Rx*/G),

(40) n +- - exp - C+ 0 (exp (-Rx/G)).

Since nG = f(x*), multiplication by G gives

(41) f(x*) - A(x*) + O(exp (-Rx*/G)).

In order to justify replacement of x* by x in the identity (41), it is con-
venient first to show that

(42) f'(x) - A'(x) - 0(1) (0 < x - x* < G/(n + 1)R).

Differentiation of g as a function of x in (35) gives

(43) f'(x) = (n + 1)R.

But

A'(x') < A'(x) = R exp (- -C)

_ A'(x* + G/(n + 1)R) - A'(x*) exp (1/(n + 1)).

Since, by (39), A'(x*)/(n + 1) - 0(1), it follows that

(45) A'(x) = A'(x*) + 0(1).

Subtraction of (45) from (43) gives

(46) f'(x) - A'(x) = (n + 1)R - R exp -* - C)+o(l).

The required relation (42) now follows from (40). Integration of (42)
gives

f(x) - A(x) = f(x*) - A(x*) + O(x - x*)(47) ( O(exp (- Rx*/G)) + 0(1/n) - O(exp (- Rx*/G)).

Since x - x* iq bounded, x* may be replaced by x in the last expression,
and this gives the asymptotic formula (33).
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V. GRAPHICAL SOLUTION TO EXAMPLE NO. 2 (THE RANGE
OF A FLEET OF AIRCRAFT)

I am indebted to my colleague Dr. H. Morris, who encouraged me

to clarify the presentation and to provide a treatment of the case of

aircraft of unequal speed. Two solutions are presented.

A. CASE OF AIRCRAF' WITH EQUAL SPEEDS

Initially, the problem will be solved using the two tacit assump-

tions contained in Franklin's solution, namely:

1. All aircraft are flying at the name speed.

2. Time lost in refueling is neglected.

29



u-D

0 1XB Distance

FIGURE 2.

+Y1 A

Max range

FIGURE 3.

u- >< dd



Figure 1 shows the relationship between fuel consumed and dis-

t'nce flown; for example, the fuel required to travel distance OB is

given by the ordinate OD. The relative efficiencies of aircraft are

readily indicated by the slope of lines AO--the smaller the slope, the

more efficient is the aircraft.

Figure 2 shows the solution for the case of two aircraft of

equal efficiency and equal range. In this case it is immaterial which

of the two aircraft gives up its fuel--the maximum range remains the

same in either case. To determine the range and location for refueling,

for convenience of graphical solution the fuel-distance relationship

for these aircraft is drawn, one below and the other above the x-axis,

OA applying to aircraft A and OB to aircraft B.

If we draw line A'C parallel to line OB, the ordinates CC' and

C'C" give the amounits of fuel required by aircrafts A and B, respec-

tively, to cover the distance OC'. It becomes evident that at point

C, aircraft B, by giving up all its fuel, can replenish the fuel con-

sumed by aircraft A. In fact, CCfl = A'B, and CC' = A'B - C'C'1 ; there-

fore, at C', aircraft B has just enough fuel left to restore the fuel

originally carried by aircraft A. Thus, aircraft A can now proceed

to a new destination A' such that C'A" = OA'.

Next, we cox,3ider the case of two aircraft of equal efficiency

but unequal range. In this case it is not self-evident which of the

two aircraft should give up its fuel. Examining both cases, as shown

in Fig. 3, we see that aircraft B should refuel aircraft A. The graph-

ical construction involved is the same as before but is repeated for

each aircraft to establish two maximum range points: point B' if air-

craft B is used to refuel aircraft A at a distance OC' from start of

flight, and point A' if aircraft A refuels aircraft B at a distance

OD' from the departure point.



Figures 4, 5, and 6 show the determination of maximum ranges for
pairs of aircraft of differing efficiencies and ranges.
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We will assume now that fleet of aircraft examples shown in

Figs. 4, 5, and 6 represented six aircraft flying together. Having

established the preferred order for refueling for each pair, we are

now left with three aircraft, A4, A, and B the subscript designating

the figure where we have determined the new range of the respective air-

craft. We also established thr- locations where the refuelings took

place. Figures 7 and 8 reproduce these locations at the time of re-

fueling, also individual ranges which each aircraft could -,over with-

out further refueling. For clarity we redraw Figs. 4, 5, and 6, com-

bining the fuel-distance relationship of the three aircraft in Fig. 7

to facilitate graphical solution of the problem. If aircraft B were

to refuel aircraft A, the amount of available fuel is given by line

O'B6. Proceeding as before, we find point A' and thus the range ex-
64*

tension of aircraft A to point A/ fror, the sequence of refueling AO'

with aircraft B and finally with aircraft A5.

Figure 8 is merely a check to see whether a different refueling

sequence would improve the range. In the illustration, A4 refuels A5,

and B6 completes the refuleing cylce by giving up its fuel to A5 . The

range, although close to that found in Fig. 7, is, however, smaller.
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B. CASE OF AIRCRAFT OF DIFFERENT SPEEDS AND EFFICIENCIES

This case is shown in Fig. 9. In addition to the abscissae of

distance we show to the left of the origin an abscissa of time. Thus,
lines OAt and OBt give the time-fuel relationship for aircraft A and B,

respectively. Selecting time interval t from start--assuming in this

case that both aircraft depart simultaneously--we find that aircraft
A would have outdistanced aircraft B by G'A'. For aircraft A to ar-

rive at G', it would have been necessary to delay its departure

by a segment AC, using the scale of time, or to move its departure

point back a distance AC, using the scale of distances. On the other

hand, if we wanted to have the two aircraft meet at a point A', it
would have been necessary for aircraft B to be stationed distance G'A'

ahead of aircraft A or to have delayed the departure of aircraft A by
a time inter>.il represented by a segment G'A', using the scale of times.

Because of linear relationship of the variables involved it can
be seen that lines OC and OD represent the locus of points through

which pass lines OA and OB appropriate to selected distances of ren-
dezvous of the two aircraft. Thus, line CC' would describe a condition
in which aircraft A would arrive at point G' when aircraft B has con-

sumed G'G amount of fuel. This suggests that if we drew lines B'F

parallel to line OB, and B'I parallel to line OA, we would establish
points H and E, giving the earliest time for complete refueling of

aircraft A by aircraft B, and aircraft B by aircraft A, respectively.
By inspection it is evident that the latter choice results in better

range. The new range is at point B ".

It is believed that this method can be readily extended to the

case of s3veral aircraft. Although it requires a trial-and-error
solution because it is not evident in what combinations refueling
should proceed, the simplicity of the solution results in relatively

small labor.
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VI. GRAPHICAL SOLUTION TO EXAMPLE NO. 3 (A BEAM UNDER
COMBINED COMPRESSION AND TRANSVERSE LOAD)

A. PRECISE BENDING MOMENT

The general expression of the bending moment can be written as

M = C1 Sin (x/j) + C2 Cos (x/j) + wj ()

where x is the distance from the left support and w is the uniformly

distributed transverse load. In the expression of j =,pL, E is the
modulus of elasticity, I the effective moment: of inertia and P the

axial compression. C1 and C2 are the constants of integration which

can be determined from the conditions at the two supports; C1 =

[D2 - D1 Cos (L/j)]/Sin (L/j); C2 = Dl; D1 and D2 are introduced for
brevity and designate as follows: D1 = M1 - wj2, L is
the length of the bay, M1 the bending moment at the left support, M2

is the moment at the right support. See Fig,. 1.

Attention is invited to the mathematical significance of the

trigonometric functions appearing in the solution of differential

equations involved in the problem of combined compression and bending.

These trigonometric functions must be thought of actually as rep-

resenting the infinite series whose limiting magnitude can be considered

as the sides of a right triangle usually employed to define the Sine x

and Cosine x, w;'hen one angle of a right triangle is x radians in Triag-
nitude. This pi-operty mdkes possible the graphical construction des-

cribed in this article, but the reader should not lose sight of ths

true sicrnificance of the functions.
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FIGURE 1.

While the present solution can be ext-nded to include the case

of transverse loading other than uniform the present article deals

with a uniformly distributed transverse loading only. Examining

equation 1, we observe that by drawing two circles with radii equal

respectively to C1 and C2 and distant wj2 and by considering the signs

oi the products C1 Sin (x/j) and C' 2 Cos (x/j), it is possible easily

to obtain their magnitude for any value of x from zero to L. It will

be found in most practical cases that C and C2 will have a sign oppo-.2

site to that of wj4 and we will assume that they are negative. The
construction, however, is simple and once it is understood it can be

easily changed to take care of the actual signs of C, and C . Noticing

that Sin (x/j) changes from zero LO Sin (L/j) while Cos (x/j) from 1
to Cos (L/j) it is obvious that the angle 57.3 deg (L/j) must be drawn

in such a way (if we want to measure the bending moment, alono y axis)
that for the value of x = o the products C1 Sin (x/j) aid C2 Cos (x/j)

become zero and C V respectively. This can be obtained by measurinn -i

the angle 57.3 cjeg (i/j) on the circlc C1 from the horizontal, while

on the circle C2 it must be measured fr'or a vert-ica] dian.ter.

2



r
F Draw the beam 1-2 and on the continuation of the line choose a

center from which the circle C, must be described. Measure downward
2along the continuation of the vertical diameter the distance wj and

from that point as a center describe the circle C. Lay out the angle
2'

equal to 57.3 deg (L/j) from a horizonta] diameter and construct this

angle also on the circle C in which case it must be started from the

vertical diameter. (The construction is illustrated in Fig. 2 and
made clockwise.) Dividing the length of the bay and the arcs 1-2 of

the circles C1 and C2 into any number of equal parts, we construct the

bending moment diagram by simply projecting the points horizontally

from the circles on the vertical lines passing through the corresponding

points on the beam. In Fig. 2 the construction is illustrated for the
point b. It can be easily proved that the ordinates enclosed by the lines
lb, 21 and 12 b 22 represent the bending moments at the corresponding
points of the beam in the scale in which were drawn the circles C. and

.2
C2  In fact b b2  ObI + Ob2 = C1 Sin (x/j) - wj + C2 Cos (x/j).

a b c 2 0

2 57.30 L/j 1

22c 2 b

2 1

FIGURE 2. Construction of Precise Bending Moment Diagram

L



In order to obtain the circles C and C it is, however, not
1 2 ' vrnt-

necessary to calculate the magnitude of C1 and C since we can make

the following observations: From Fig. 3, we see that since the dis- -s

tance 01 02 is equal to wj2, if we lay out downward from 01 the seg-

ment 012 such that it is equal to M1 we obtain immediately C2 .
2

C2 = D1 = M1 - wj = _ (wj - ITo obtainetheDl-to.22

To obtain the D 2 - wj2 lay out upward 02 01 equal to

obtaining 0 01 which is equal. to -D 2. To obtain CI, after having
constructed the angles 57.3 deg (L/j) we observe from Fig. 3 that

taking and adding it downward to D2 along vertical diameter we

obtain point 21 such that the intersection of a horizontal through
V

that point with radius 01 21 gives us C1 .

0 2V2= D1 Cos (L/j)

101 2, =D 2 + D1  Cos (L/j)

S21 0 2 /Sin(L/j) - [D - D Ccs(L/j)]/Sin(L/j).011 1V 2 1

The attention is invited to the fact that angle 57.3 deg (L/j) must

be drawn accurately since otherwise it may result in a large error in

C1 . As a check, the distance 21 2V, equal to 12' may be used before

proceeding with further construction.

B. PRECISE SHLFAR

By differentiating the expression of the bending moments (equa-

tion 1) we obtain the expression for shear as follows:

d S : 1 (C1 Cos r Sir.S- j 1 - 2 S i )

It can be seen that if we draw the beamn, divided into the same number

o• parts as before, along the continuation of the vertical diameter and

project from the circles C1 and C2 the points 1 ........ b ........ 2 on

the horizontal lines drawn througTh the corresponding points on the beam,

I

• q 0



F
the horizontal distances between the two curves thus obtained will

give us the magnitude of shear in the scale of M/j where M is the

scale of moments (Fig. 4).

0 22

22 57.3

MI
M2  C2 L/L 2 =

2 Wj 2 2 7 4 LaC

2 2

2 2  b

2 0 3 0

c L/ c

FIGURE 4. Construction of Precise

Shear Diagram 2
S6- 4-66-;4

C. MAXIMUM BENDING MOMENT

The location of the maximum bending moment is determined from

the shear diagram at the point of zero shear.

D. DEFLECTIONS

To obtain the deflection, we observe the fact that the 2xpression

for precise bending moment can be written

M - t1y (2)o y]:,:

Whe re , Mis the primary bendinq mon ent due to the transverse load aloie.
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Relationsh;p of construction points to structure of the beom

S-180----
S c a le o f m o m e n ts: V"r12 ,0 0 0 in . lb 1 61 71 81 , 9 1 0 1 III 1 .1 1
Scale of deflections":I" P ,M 2 r 31 41 51 71 81 21 1Q111 ,111
-6000,12,o000 = 1/2' I11 b/ cl IN

S•,-e of lengths:
1" 30 in.

Precise shear diogram

Scale of shears:
f I" = 20,00097. 98=

204 lb
F,;mory bending •

105.5
z___ I- 

- ______

Precise deflection diagram
I a b c d e f g 2

IL a

c

d b

:2

Precise~ bedn oetdarm "-- 000i. lb

FIGURE 5. Graphical Solution of the Boom Analyzed in NACA Technical Note 383
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Fr•om equation 2 we can express y = (Mo - M)/P.

It is evident, therefore, that in order to obtain the deflection, we

can simply superimpose the diagram of precise and primary moments and

by dividing the difference 1,etweern the two moments by axial load P, to

determine the magnitude of the deflection at any point. If, however,

Qe should replot the precise bending moment diagiam on a horizontal

base by using a new scale of moments M = P (where M is the new scale

of moments and P is the comprecsion load) and construct the primary

moment to the same scale, we will obtain directly the deflections to

their actual magnitude. The replotting of the precise bending momeric

can be easily accomplished by using a proportional divider or by a

method of similar triangles. The primary, bending moment for a uni-

formly distribLted loae is simply constructed as a parabola and the

example (Fig. 5) gives the constructional rir involved.

E. EXAMPLE SH(tJNG APFLICATION OF THE METHOD

To illustrate the practical application of the method aescribed

in this article, a complete determination of precise bending moment,

shear and dellection diagrams -s given here for the metal truss beam

whose properties and effective moment of inertia were determined by

Mr. Tndrew E. Swichard in NACA T.N. 393 (pages 24 to 31 inclusive).

Data:

L = 180 inches: P = - 6000 pounds; I eff = 5.76 inches 4 ; E = 10,000,000

pounds/square lh; M = - 40,000 inch pounds; M° 0 - 0; w - 12 pounds/

inches; j = 97.98; j 2 = 9C10; wj - 115,200; L/j = 1.838 = 105 deg

19 1; wL2,/8 = 48,600 inch pounds.



VII. GRAPHICAL SOLUTION TO EXAMPLE NO. 4 (THE PROBLEM
OF CAR REPLACEMENTS)

A given railroad owns N number of cars, purchased over a period

of T years. It is assumed that the ages of the cars can be expressed

as a linear function of time, thus giving T as the average age of the

cars. It is proposed to reduce the average age to a stipulated figure

by purchasing new cars during the next AT period. Assuming that the

replacements are being accomplished by yearly purchases and that car

ages can be considered a linear function of time, determine the number

of cars to be purchased and replaced in order to maintain the original

number of cars but lower the average age of all the cars at the end of

AT period to the desired figure.

In Fig. 1, at start, CD is the average age of the N cars. The

average age is reduced to EF after the required number of cars was

retired and replaced with new cars during the interval of time

AT = 'B= 00 0
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Number
of cars

Assume - .inear variation of cars' ages. A B

Time and cars' ages are giver, by abscissa
while number of cars by the ordinate

CD is the average age of old cars

EF < CD average age of cars after
replacement of oldest cars with new
cars purchased during time period AT

EF is stipulated iritially

10

'4U

age after time/ ~interval AT "

L -- i ime

p L 0 P%

Past Present Future

FIGURE 1.
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Figure 2 shows the old and the new cars at the end of the AT

replacement period.

Line 01 gives the ages of M new cars purchased during the period
of AT = • years (an equal number of old cars was retired); at the

P
end of the 00 period the ages of the remaining old cars are given by

line AC. By averaging the ages of all cars at the end of the 00 per-p-
iod, and drawing a straight line BEL passing through point E, such

that EF is the specified new mean age of all the cars, we define an

area LBOp gi.ing the total age of new and remaining old cars.

This implies by inspection that area AGHB must be equal to area

LHIO or, which is the same, that area APLB is equal to GPOI.

K'

Number
Retire all cars betweei the ages OP and GI, of cars

i.e., 1 cars and replace them with new

cars purchased during the same time period K B

To hove reduced the average age from CD to
EF means that at time 0 the area of triangle
BL Op would represent the total age cf all the
cars. For that to be the case area GABH
must be eaual to the area LHIO /

A' K"

/ /I I

FIGURE 2.
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One can resort to a graphical determination of M (Fig. 3) by

proceeding as follows:

Draw line RK equidistant from lines AO and NO p. Erect an ordi-

nate at L intersecting lines PA at S. Continue PA until it intersects

KR at K'. Mark off an ordinate K"R equal to the segment K'T' on the
line KR. By inspection we state that with sufficient accuracy, area

8000

A KB

KI

7000 - A K B

I

I
6000 - TT

5000 - y

0

E

z

3000 -

2000 -

1000- • 172001 -- L , ,R
-60 -50 -40 -30 -20 -10 0 10

Year

FIGURE 3.
•-14. 4.- '0

'iS



LSK'T' is equal to the area LSK'R. If at midpoint of line SK" we

draw line GI parallel to the abscissa axis, and a line joining I with

0, the figure PGIO gives the required area, while its ordinate 10p de-

fines the number of cars, answering the problem.

Figure 4 gives an example of the application -)f this method.

8000
Data:

Number of cars at start_ 6804

7000 AveragR age 29 yr N

Number of cars after 10 yr-o804

Average age 25 yr
6000 -

Problem:

Find number of cars to
be replaced in equal

5000 yearly lots 6804

3 Final M
29

0 4000 95,256/( 5 3 +58 )
S2 / 25
ED = 1720z

3000

2000 - LSolution M = 1720 cars

/ o ar s Per Year
10 0 0 - 2

-20 1

-60 -50 -40 -30 -20 -10 0 10
Year

"14 •FIGURE 4.



VIII. GRAPHICAL SOLUTION TO EXAMPLE NO. 5 (DETERMINATION
OF BALLISTIC TRAJECTORY PARAMETERS)

For much of the conceptual and analytical work dealing with

ballistic missiles, computer precision is not required.

Given two of the three basic parameters (burnout angle, burnout

speed, and range or range angle), the method described in this paper

can be used to determine vacuum trajectory, velocity at any point,

and time of flight, using only a slide rule, compass, and ruler. Figure

1, taken from "Free Flight of a Ballistic Missile, 't by Albert D. Whelan

(American Rocket Society Journal, December 1959), gives the relation-

ship of burnout speed, burnout angle (from vertical), and range angle.

The method assumes a nonrotating earth and applies to the portion of

the unpowered trajectory outside the atmosphere. For many problems

the data ar'e adequate for a complete trajectory from ground launch to

reent :'y.

25 T-

~~R- .4....

FIGURE 1. Relationship of Burnout Speed, Burnout Angle, and the Range Angle



A. BALLISTIC TRAJECTORY CONSTRUCTION

Graphical construction of the ballistic trajectory is made on
the basis of the following laws of mechanics and properties of conics:

1. Ballistic trajectory is an ellipse whose one locus is the

center of the earth.
2. Included angles between a tangent to the ellipse and lines

joining the point of tangency with each focus are equal.
3. Sum of the length of the two lines joining any point on the

ellipse and its two foci is constant.

4. Given its major and minor axis, an ellipse can be constructd

by the use of the auxiliary circle.

Figure 2 shows the construction of ballistic trajectory ellipse.

S,,.Trajectory ellipse

//

F

i A

Minor Sem, GAiS

o,\ 1O Oz

\ELF 
2 = ELF,

\LF2 + LFI A0 F 2:20 1F I

E 
Earth radius .

F,

FIGURE 2. Construction of Ballistic Trajectory Ellipse



B. DETERMINATION OF SPEEDS AND TIMES ALONG THE TRAJECTORY

To determine missile speeds and times along the trajectory we

make use of the energy relationship which gives the interplay between

kinetic and potential energies:

12=M 1 MV 2 dH ........
tMo 2 V + 2

oHN

where Vo is the burnout speed; V is missile speed at some point N; go

is gravitational constant at sea level; HN is a segment giving the

height of the missile from the center of the earth.

After integration we obtain

Vý V. + 2g R 2 -- or
0 00 HN R,/

V~2 V2

2% g h-:= (2)2go0 ý 9

Here H is the altitude of the missile, HN = Ro+h, and V is the speed

at that point.

From Equation 2 it can be seen that previously obtained trajec-

tory can be transfo,'ined into the curve of potential energy by correcting

each altitude by a factor of L2, as shown in Fig. 3.

Ht",



V A,

/I

F1 N, I H') CIAh h N

X!

TAI

NN, R2-W potential energy

ct point N

i f V • •, N V2j

N 2N ' 2where g -g Roand
2 0 H2

V missile speed at point N

F,

FIGURE 3. Determination of Kinetic and Potential Energy

It then becomec apparent that if NNI, the segmen,-: representing poten-

tial energy, is subtracted from the segment representing the initial

kinetic energy, LL 1 = NN3 , the difference thus obtained, N2 N 3 repre-

sents, to a proper scale, the vel-Qcity of the missile at that point

on the trajectory. Ass'zning that we have &'.-tained such a segmnent,

then if speeas are taken in feet per seccrid, accelerations ii, feet

per second squared, and distarnkcs in nautical miLes, the speeds gould

te obtained Ib , neasurirui. the iencrth of the segment usiz ,, the' sc a! of

dis'cances and then takingj a sq-arm root of the product:



(Segment length) x 2 go x 6080, so that missile velocity at

arny point is

V = 625 /Segment length = 625 4N'

2N3

If, now, we were to divide the trajectory into a number of equal

segments and determine at midpoint of each such segment the average

velocity V, then the ratio of the segment length divided by the aver-

age velocity would give us the time of flight along that segment of

trajectory.

C. USE OF LOGARITHMIC SCALES FOR DETERMINATION OF SPEEDS 0ND TIMES

The graphical construction and calculation of speeds and times

can be more conveniently accomplished by the use of logarithmic scales.

In Fig. 4, if we make lgV = OL, we will have a convenient loga-

rithmic scale 0 of velocities and At.

Having previously divided the trajectory into a number of equal

length segments L-l, 1-2, 2-3, etc., one measures lengths N2N3 with

the linear scale of lengths 1 which in Fig. 4 we plotted to the left

of 0. Next, using a logarithmic scale, these magnitudes of these

length- are plotted on uor- ýýoriding rays as an extension of ig 625

which was marked as an arc of a circle with 0 as its center. Because1 -

the magnitude required is l ig N2N3 , the logarithmic scale () of half

the magritude of that used for lg 625 must be employed. A smooth curve

LLA plotted th.'ough these points gives at any point on the trajectory

the speed at that point.

T. 1MIES

Usiny logarit'.Kwic scale (D , we draw an arc of a circle with

center at F and radius equa.! to Iq (400x6080) because the lengith of

the equal sc!:2•erts into which we divided the trajectory is 400 nmi.

Thus,

C.
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_ AS ASiIg At 1- _g L 1 (ig 625 + lg -g2 3

expressed in terms of logarithmic scale C, gives logarithm of At

at the approp,:iate points 1, 2, 3, etc. These lengths terminate on

the arc Ltine Lm and the speed curve LLA as shown in Fig. 4. By sum-

mation of the At's, one obtains the elapsed times from launch to any

point on the trajectory.

E. EXAMPLE

Figure 4 was drawn for a case in which the given initial condi-

tions are

V0 = 24,000 ft/sec

Yo = 41 deg (from vertical)

From Fig. 1, one finds the angle e = 67.8 deg, equivalent to a

range of 4070 nmi. Figure 4 gives the appropriate scales necessary

to construct and to determine missile altitude, velocity, and time of

flight at any point on the trajectory and summarizes the data graphi-

cally. The apogee is found to be 1870 nmi, the apogee speed 10,160

ft/sec, and the total time of flight 46.9 min. The total time of

ilight was obtained as the sum of At's for each segment as shown in

the following tabulation.
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Seconds
No. Segment Aect o _s

1 L-1 118 118
2 1-2 130 248 1
3 2-3 146 394
4 3-4 163 557
5 4-5 184 741
6 5-6 205 946
7 6-7 221 1167
8 7-8 244 1411
9 8-7 244 1655

10 7-6 221 1876
1] 6-5 205 2081
12 5-4 184 2265
13 4-3 163 2428
14 3-2 146 2574
15 2-1 130 2704
16 1-L 118 2822

I am indebted to Dr. R. Finke, who calculated principal trajec-

tory parameters, using both a desk calculator and slide rule as well

as the computer.

The following tabulation gives the three sets of figures and,

thus, a relative precision of the graphical and analytical methods:

Graphical Analytical Comiuter --

Range, deg 68 67.74 67.74
Range, nmi 4,070 4,071.7 4,072.66
Apogee altitude, nmi 1,870 1,858.1 1,857.38

Apogee velocity, ft/sec 10,160 10,225.3 10,228.81

Flight time, min 47 46.78 46.78
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IX. GRAPHICAL SOLUTION TO EXAMPLE NO. 6 (THE TWO-MAGNETIC
REACTOR PROBLEM)

Given: Two magnetic circuits which are so constructed that

they share some volume in which their respective magnetic fields and

induction (also flux) are at right angles (Fig. 1). Each core may

be of any reasonable material.

Problem: Por a given .47NI in the control magnetic circuit,

what is the flux through the power circuit for various .4nNI of power.

FIGURE 1.
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4.

A. METHOD A: GRAPHICAL SOLUTION

Legend

I Current in amperes.

N Number of turns.

4 Mean length of the magnetic path.

B Flux density in gauss.

H Magnetizing force in oersteds (gilberts/cm)

F Magnetomotive force in gilberts.

C,c Properties and characteristics of the control reactor

circuit.

P,p Properties and characteristics of the power reactor

and circuits.

Z,z Properties and characteristics of the common zone of

C and P (Fig. 1).

ZC&ZP Subscript denotcs characteristics due to or induced by the

the control and power reactor, respectively.

An examination of Fig. 1 suggests the following relationships:

BZC BC (1)

BZpZ Be (2)

2 2 2
HZC + HZp HZ (3)

2 2 2
BZC + BZp Bi (4)

In addition, since it is possible to orient the common zone

material in such a way as to ensure identical mtgnetlzation properties

at right angles along the direction of core C and core P, one can

write

8 ZC BZp (5)
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The magnetomotive forces in the control and the power circuit are:

F C H(Q)dt =H Ct + H ZCtZ=.TT . (6)

F P = ýH(LOdt = H ,P+ H ZP tZ= 4TPI.. (7)

The relationships B vs H are given in the formn of usual mnag-

netization curves, indicated schematically in Figs..2, 3, ind 4.

C

B B P
C 

P 
o*

H CH

FIGURE 2. FIGURE 3.

z
BZ

H
14i4-0.2 Z

FIGURE 4.

A1so known are the number of tu'-ns in the control and poweor

rea3ctor.



The solution of the problem requi7es the determination of the
magnitudes of HC; Hp) HZCj and HZp for any selected values of FC
and FPp .- '

We will proceed to develop a graphical solution based on the
following observations:

Assume that for a specific value of F and a specific value of
C

F we obtained the corresponding magnitudes of HC, Hp, HZC, and HZp"

Then, since Hz2 + Hz2 = Hz we can spot the proper points on theThej ine ZC HZP .

three magnetization curves (as shown in Figs. 5, 6, &id 7):

BC -

VH H

FIGURE 5. FIGURE 6.

iZ

z

~~H4

FIGURE 7.
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We redraw curves of BC vs H0 and B vs Hp by modifying their
4C C p

abscissae by a factor - and - , respectively.

This is shown schematically in Figs. 8 and 9.

BL

COC

B

* C

IH C

___ ___ __ ___ H

H A

z

FIGURE 8.

B

PP

PP

FIGURE 9.

Assuming that the scales selected remain the same, then BC and

B of Figs. 8 and 9 are equal, respectively, to B. and S. of Figs. 5
and 6.

We will now aad to these curves a vertical line on each, such
that its distance frmm the origin of coordinated is equal to

Pc
-- and for control and power curve, respectively (Figs. 13 and 11).

"C3



C

--- ---€ II
C T

H FH z

tz FIGURE 10. -

e ,
B I

p / I

AL L

z FIGURE 01.

Note that: the difference of abscissae in these curves, namely

FC 4¢ Fp t

Since we asswned that points C and P, and hence points C1 and Pis

represent the solution of our specific problem then angles 0 in Figs.

10 and 11 are equal because, in that case,
C ip

r-C =qP which fulf ills the reldtion-

ships (5) and (1) and (2).
C4

B



A check of the correctnessof our solution would be to construct

right angle triangle shown in Fig. 12 below and compare the magnitude

of HZ thus obtained with the HZ of Pic. 7.

HH
H zz

zc

FIGURE 12.

The examination of Figs 10 and 11 suggests a graphical solution

of the problem. W plot BC vs HC r and B vs Hp r having
z z.

selected suitable scales for the coordinates.

On this diagram we draw vertical lines spaced r and ! rom

the origin of coordinates as it was initially shown in Figs. 10 and 11.

On curves C and P we mark several pairs of points corresponding to the

number of equal e1 angles randomly picked by us. For each point we

obtain a pair of magnitudes of Band and a corresponding 1

H ZP among which accidently there may be a point representing the solu-

tion of the problem.



B

Z -
• H' c 'z '' r

c L z

* 1 Pt

B'

.1.. _____ ____.

F C

S6- 1 *6O - J O

FIGURE 13

Since, however, this is improbable we must proceed differently.

Using values of B and B1  and values of H1  and H
Sv o ZC Zp from

points corresponding to the same angles 0 we obtain graphically

B, j(Bc) + (Bl)

because

BZC B C and BZp Bp

Sirmilrly,

HZ + (HZp) 2

The resulting curve contains one correct point, namely the point

common with the magnetization curve BZ vs Hz (curve Z as shown in

Fig. 14).

6 E.
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B
z

B I

zz

W614-W831

FICURE 14.

Having determined Hz we obtain BC and B as well as HzC and

HZp, as it will be shown later.

The soluzior must be repeated for various values of F% and Fp

and cross-plotted to show the interdependence of the selected variables.

B. APPLICATION OF THE METHOD

a P are superimposed on theCurves B0 vs C and Bp vs H Z

same graph using cross-section paper.

This graph is used as a template, the actual constructioi being
performed for each pair of FC and Fp on a separate piece of tracing

paper which thus will contain all details of construction permitting

an easy check of individual solutions.

For one group of solutions either F C or FP is kept constant.

The curve corresponding to the variable factor is traced on the
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individual vellum and placed so as to superimpose vertical lines F

described on page 64. With this arrangement, a group of radial Z

lines emanating from point 01 provides a group of points ic and ip,

2c and 2p, 3c and 3p, etc. corresponding to points pl and C1 of Fig. 13.

CC

3H

c P•

2 4an

F22  
0

¢P

SFcL

P

zz

S.I6- FIGURE 15.

To ensure uniformity of all solutions we will agree to retain

the orientation of coordinates of curve C, for example, and rotate

90 dog the coordinates of curve P.

Having marked off a seri.es of poiuts L, 2, 3, 4, etc., forming

the same angle with the coordinate axes, we proceed to construct

curve Bz vs H..

For clarity the construction is shown in Fig. 16 for point 2.

Construction of B1 vs H-1 curve illustrated for point 2. BC and HZCBz V z z
ordinates remain oriented as drawn w'hile Bp and HZp ore hnate rotated

1. 1'790 deg. Points "Z" define 2 vs H curve*
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FIGURE 16.

After repeating this construction for all the points (normally
4 to 5 points suffice) curve BZI vs Hi is drawn (Fig. 17) and super-
imposed on the selected B. vs H Z curve which thus determines point
Z establishing the values of H 7 and BZ forming the solution of
the problem. The determination of point Z on BZ vs H Z magnetization

curve is shown in Fig. 18.
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FIGURE 18. Determinntion of point Z on B vs H magnetization curve
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FIGURE 19.

Final determination of all the unknowns of the original problem

is given in Fig. 19. Having obtained point Z we project it on O'B'z
and O'H' axes indicated here as points B" and HO. The magnitudes

ZB" and Z'H" are measured off on O'B" and O'H' curves and BC, Bp,
HZp determined directly as shown.

The practical application of the method permits a number of

shortcuts:

The curves need not be redrawn for separate constructions and

many of the construction lines need not be drawn because of the

reference offered by the graph paper on which are drawn the magnetization

CUrvtes1
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C. METHOD B: GRAPHO-ANALYTICAL SOLUTION
In describing the alternate method, reference will be made to

the previous explanation of the graphical solution of the two-mag-

netic-reactor 1 roblem.

In this case the magnetization curves are drawn on log log paper
having introduced on this paper two additional scales equal to one

half of the original scales. The new scales thus permit direct

reading of the magnitude of the square of any ordinate plotted using

the original scale (Fig. 20).

Instead of obtaining graphically the curves of HZC vs Be and
HZp vs B as it was shown in Figs. 10 and 11, a table shown below

is prepared.

TAbLE 1
HCH HC ýý HZC He6 L ~ p

Z - -- Bp Hp Hp pHý

Curves of HZC vs BC and H vs B are plotted on a sheet of vellum,

using vhe previous log log plot as a template as shown in Fig. 21.
Note now that randomly dr'awn set of 45 deg lines accomplishes the
same purpose as the radial lines of Fig. 15. In fact, because the

abscissae and %2.-inare scales are equal, we can write

log BC - log Bp log HZ l og Hp or

B C HZC

B H ZP

which fulfills conAItioan (5).
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Having thus obtained a series of ic and ip, 2c and 2p, 3c and 3p,

etc., points we read the square of the corresponding ordinates, enter

them into Table 2, add the respective magnitudes, and plot the curve

of B. vs Hz whose graphical determination was given in Fig. 17. In

this instance the operation of extracting the square root in expressions
1 t,2 /2 1 •.2 ,2

Bj = BZ + Bip and H =z HZC + H is taken care of by using

the proper scale.

TABLE 2

c BZC Bp Bzp ze Bzp HZc H p HZC + HZp

III I_ _ _1.

Figure 22 shows the plot of BZ vs H whose intersect with the

selected BZ vs HZ magnetization curve determines the point Z.

The determInation of points C and P and corresponding magnitudes

of BCý Bp, HC, HZC, and HZp is given in the illustration and is self-

explanatory.

Example:

Assumed magnitudes

Lc P FC = P=

Curyv C is Cobalt Iron (50% Co, 50% Fe)

Curve P is Medium Silicon Steel

Curve Z is Permalloy.

Table 3 is a completed version of Table 1, and Table 4 is a com-

pleted version of Table 2. Figire 22 which was used as an illustration

of the method also represents a graphical solution to the values con-

tained in Tables 3 and 4.
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TABLE 3

HC L H P H
Be Hc H 0c HZ0  Bp H p Hp , H p

1.77 1.0 5.0 11.25 1.3 0.5 2.5 7.5

4. 1.5 7.5 8.75 3.5 0.75 3.75 6.5

7.6 2.0 10.0 6.25 6.0 1.0 5.0 5.0
10.2 2.5 12.5 3.75 7.3 1.25 6.25 3.75

12.1 3.0 15.0 1.25 8.4 1.5 7.5 2.5

13.3 3.5 17.5 9.1 1.75 8.75 1.25

14.3 4.0 20.0 9.8 2.0 10.0 0

15.5 5.0 25.0 10.6 2.5 12.5
16.5 6.0 30.0 11.3 3.0 15.0

17.2 7.0 35.0 11.8 3.5 17.5

17.7 8.0 40.0 12.2 4.0 20.0

18.2 9.0 45.0 12.7 5.0 25.0

18.7 10.0 50.0 13.0 6.0 30.0

20.0 15.0 13.3 7.0 35.0

20.8 20.0 13.5 8.0 40.0

21.4 25.0 13.7 9.0 4-.0

21.8 30.0 13.8 10.0 50.0

14.3 15.0

14.6 20.0

14.9 30.0

TABLE 4

No. B " B Hzc iz B2 B2 ,'2 H" 2  H' 2

___ -ý Bz z c.p z Hz zp

5 6.78 5.42 8.7 6.75 5.42 8.7 45.8 29.4 75.2 45.6 30.0 75.6

4 8.4 1 6.4 10.5 5.6 4.42 7.1 70.6 40.9 111.5 1 31.4 19.6 51.0

3 9.4 7.4 11.9 4.68 3.68 5.9 88.4154.8 143.2 21.4 13.6 35.0

q 10.2 8.0 12.8 3.82 3.0 4.9 100.4 64.0 164.4 14.6 9.0 23.6

1 11.2 8.7 14.1 2.76 21 . 1241.0 75.6 199.6 7.6 4.6 12.2
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X. CONCLUSIONS

The range of problems of the six examples presented here is

broad enough to acquaint a reader not versed in the subject with the

variety of approaches which could be used to solve a given problem.

[• In all cases, however, graphic3l problem solving has one common

ingredient--to prepare at the outset a diagramatic presentation of

v the relationship of variables in several possible forms. In fact,

V very often the approach of classical Euclidean geometry will offer a

hint of required construction. By the classical approach I mean the

assumption that the problem has been solved, which thus permits the

drawing of the solution figure. Inspection of this figure, with its

juxtaposed variables, will often disclose their principal dependence

or relationship pointing to a solution. A good illustration of this

is given by Figs. 2 and 3 in the problem of Car Replacements (pp. 47,48).

The example problems contained in this paper could also form

instructive exercises in training one in the use of graphical computer

display and techniques of interaction between the computer and the

-" operator.

If this paper will whet the graphical appetite of some of its

readers it will amply justify its publication.
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APPENDIX A. A NEW APPLICATION OF THE LOGARITHMIC POLAR DIAGRAM

The original adaption of the logarithmic polar diagram is

credited to Mr. Rith of the Eiffel Laboratory and may be found in

Eiffelts works "La Resistance de l'air et l'aviation" and "Nouvelles

Recherches sur la Resistance de ]'air et laviation." Disa-ivantage!5

of the original Rith and later methods based on the use of the log-

arithmic polar diagram are in the approximate nature of the estimated

performance obtained and the consequent inaccuracies an4 discrepancies

as compared with other available methods.

THEORY OF ThI LOGARITHMIC POLAR DIAGRAM

Rith points out that if the characteristic curves of the air-

plaie are plotted as a polar in logarithmic coordinates, the plot

represents a functional dependence of all the main factors entering

into the two principal equations of the flight characteristics of an

airplane:

W = LV2 and
HP = DV3

or expressed logarithmically:

logW=logL+2logV and

log HP = log D + 3 log V

therefore:

iou L = log W -2 log V and

log D = log HP - 3 log V.

From the last two equations it is apparent that we can consider

log L as the sum of log W and -2 log V, while log D can be considered

as the sum of log HP and -3 log V. The values of log W and log HP

can be plotted on the direction of the ordinate and abscissae directly,
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while log V can be plotted on a line inclined in such a way that the

values projected on the direction of the ordinate will give -2 log V

and the same point projected on the axis of abscissae will give a --

magnitude of -3 log V. This new axis, called the speed axis, has the
slope of 2/3 and the graduations have a modulus of 322 =3.605

tines that of the modulus used on the other axes.
The diagram (Fig. 1) thus constructed gives the necessary

functional dependence of the factors entering into the two equations.

A 'Line II to olar of iA
Log V axis the airplane -

-3

Log V
-4 Log V C

w

Log hp 40-LgLog hp ' Log hp

Log Log D 0 Ln0
2o D~g

FIGURE 1. FIGURE 2. Determination of Maximum
Speed at Sea Level

In order to take into a-count the effect of the density of the

air and so to obtain the characteristics of flight at altitude, we

observe that in the two equations mentioned above we must incorporate

the value of relative density. The new equations are written as:

W = n L V2 and

HP = n D V3

where n is the ratio of the density at altitude to that at sea level.

The neccessary transformation can be obtained by a.suming the origin

of coordinates moved along a 45-deg line so that the magnitudes

of L and D assume a new value equal to n L and n D. Consequently,
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in order to obtain the relationship of the factors involved at altitude,

it is sufficient to incorporate a new reference axis (the altitude

axis) which has a slope of 1/1, and to plot the logarithmic values of

relative density with a modulus equal to 1/ITT = 1.41 of the modulus

used for L and D axes.

Knowing the theory of the logarithmic polar chart, we can turn

our attention to the practical application cf it to performance

estimate.

It is assumed that the characteristics of the airplane (that is,

the lift and drag at one mph on a full-size machine) are determined

either through calculations or from a wind tunnel test. Knowing

the values of L and D and having a sheet of coordinates available,
we plot the logarithmic polar curve.

DETERMINATION OF MAXIMUM SPEED AT SEA LEVEL

On the right hand side of the diagram (Fig. 2), a vertical

logarithmic scale is marked scale 4. This scale facilitates the

deternination of the available thrust horsepower when the propeller

efficiency is known. Draw a horizontal line through the known

propeller efficiency (line 1) until it intersects a 45-deg line

passing through the point of BHP maximum (line 2). Draw a vertical

line (3) through the point thus obtained until it intersects a

horizontal line (4) passing through the ordinate indicating the

gross flying weight of the airplane. Point A is the thrust horse-

power available at the maximum speed. Drawing through pcint B

line (5) parallel to the speed axis, the segment BC obtained between

the intersection of this line with the polar (point C) and point

B gives the magnitude of the maximum speed of the airplane. To

find its value lay out from the origin of coordinates an equal segment

on the speed axis and the reading at the point D will give the desired

magnitude.
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DETERMINATION OF STALLING SPEED

Draw a horizontal line (1) tangent to the uppermost point of

the polar (Fig. 3). Draw line (2) through given gross flying weight.
Line (2) is parallel to the speed axis. Segment AW (where A is the

point of intersection of the two lines) gives the stalling speed

of the airplane, which must be measured on the speed axis.

SPEED FOR FLIGHT AT MINIMUM POWER

Draw line (1) tangent to the polar and parallel to the V axis -

(Fig. 4). Draw line (2) through W corresponding to the given gross

flying weight. The intersection of the two lines defines point A

in such a way that AB is the speed corresponding to minimum power

and AW is the minimum power.

ww A

SLog hp Log hp

Log D Log D

FIGURE 3. Determination of Stoaling FIGURE 4. Determination of Speed
Speed at Sea Level for Flight at Minimum

Power

MAXIMUM LID

It can be easily proved that a vertical scale graduated logarith-

mically with the same modulus as used for the L and D axes, and located
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arbitrarily on the drawing will give us the ratio of L/D at the point

of intersection of this scale with a line passing through the cnosen

point and inclined at an angle of 45 deg. In graduating this scale,

we must determine at least one reference point and graduate the scale

in the same sense as the L axis. To obtain the value of maximum

L/D, simply draw a line inclined at 45 deg and tangent to the polar

(Fig. 5). Point A gives the maximum L/D of the design.

The brief explanation of the theory and a few illustrations of

the possible uses of the logarithmic polar diagram given above

will suffice to explain the practical use of the new grapho-analytical

method which consists of incorporating the ourves of horsepower

available and required drawn in looarithmic coov'dinates. This involves

an inrorporation of a few more reference curves as explained and
illustrated in the following paragraphs.

HORSEPOWER REQUIRED AT SEA LEVEL

Knowing V max., calculate values of 0.9, 0.8, 0.7, 0.6, 0.5,

0.4, 0.3 of V max., and mark them on the speed axis as shown in

Fig. 3. This is not absolutely necessary for the purpose of obtaining

the horsepower required, but later we will see that it will aid us

in obtaining the horsepower available. The drawing of the cirve of

horsepower required will be illustrated by following the procedure

for one point; for instance, point V = 0.5 V max. (Fig. 6).

Draw line (1) through W and parallel to the speed axis. Project

point 0.5 V max. on it. This gives point A. Draw a horizontal line

through this point. Through the point B draw a line parallel to

speed axis until it intersects the horizontal line passing through

W. Through the point C thus obtdined draw a vertical line until

it intersects line AB. Since WC is the horsepower required to fly

at a speed equal to 0.5 V max., point D represents a plot of it

drawn at the proper point of the polar curve. Repeating this

construction for several points and joining all these points by a

smooth line we obtain the horsepower required plotted against the

corresponding lift and, by virtue of construction, also the known speed.
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HORSEPOWER REQUIRED AT ALTITUDE

To obtain the curve of horsepower required at any altitude, it

is sufficient to shift the sea level curve to the right by the

amount equal to the distance (1) which is measured between the speed

axis and the ordinate axis at the height corresponding to the chosen

altitude. Figure 7 shows this construction for an altitude of 20,000

ft.

HORSEPOWER AVA2IPBLE AT SEA LEVEL

To construct the curves for horsepower available at sea level,

we introduce three new constructional curves giving the w riation of

thrust horsepower against the ratio of V/V max.

On page 144, Fig. 96, of Diehl's "Engineering Aerodynamics," we

finQ the three general curves giving the necessary relationship. In

the lower left part of the diagram we incorporate these three curves.

The scale of propeller efficiencies is used now as the scale of

THP/THP0 , while the scale of V/V max., is assumed to be plotted on

the axis of altitudes (Fig. 8). In this construction we make use of

the line (2) from Fig. 1. The power plant used determines which of

the three curves shall be used. The construction will be illustrated

for one point and must be sin;ilarly repeated for the rest of the points

corresponding to fractions of V/V max. Figure 5 shows the construction

for point of V equal to 0.5 V max. See also Table 1.

Having chosen one of the THP/T'HP curves we project the corre-

sponding point on the line (2). The point at intersection projected

on the HP scale gives the horsepower available at this particular

speed. Drawing line (4) unitl it intersects the horizontal through
the point on the polar corresponding to the speed chosen, we obtain

point B of the horsepower available curve at sea level. Repeating

this construction for several more points and joining them with a

smooth curve, we obtain the curve of horsepower available. The

curves of horsepower available and horsepower required will intersect

at point B of Fig. 2, corresponding to the maximum speed when the

horsepower available is equal to the horsepower required.
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TABLE 1. VARIATION OF THP WITH V/V MAX RATIO

Ratio of THP/THP Max.

R.P.M. Max.
V/V
max. 1800 2100 2400

1.2 1.035 1.015 0.995

1.1 1.025 1.015 1.005

1.0 1.00 1.00 1.00

0.9 0.96 0.97 0.975

0.8 0.908 0.925 0.94

0.7 0.85 0.865 0.885

0.6 0.78 0.80 0.82

0.5 0.70 0.72 0.74

0.4 0.60 0.617 0.635

0.3 0.488 0.495 0.515

HORSEPOWER AVAILABLE AT ALTITUDE, UNSUPERCHiARGED

To obtain the horsepower at altitude, we will incorporate a

curve giving the variation of the horsepower with altitude. Since

our construction will be made assuming that the speed of the airplane

remains constant, we can make use of the data givcn in Table 10,

page 139, of Diehl's "Engineering Aerodynamics". See also Table 2.

TABLE 2. VARIATION OF THP WITH ALTITUDE

Altitude THP/THP0

Sea level 1.000

5,000 ft 0.820

10,000 ft 0.667

15,000 ft 0.532

20,000 ft 0.425

30,000 ft 0.261

32,000 ft 0.234
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Figure 9 illustrates the construction of the point corresponding

to an altitude of 10,000 ft. Inasmuch as the transformation of the

polar for any altitude is made by an imaginary shift of the origin

of the coordinates along a 45-deg line it is sufficient to locate the

point B on the horizontal passing through the 10,000-ft point on

the axis of altitude so that a line drawn through it and inclined

45 deg will cross the axis of horsepower giving the magnitude CO

equal to 0.667 CA; that is, if the point A corresponds to 1000 HP,

the value read at C must be 567 HP. Having the curve of variation of

horsepower with altitude it is sufficient to slide the curve of horse-

power available at sea level parallel to itself by the amount and

along the direction (1) corresponding to the desired altitude as shown

in Fig. 9.

Horsepower average

\e'at 10,000 ft

atHorsepower average
\at sea level

ID A

Variation of thp
ith altitude

Log hp
C Log D

S4* 14-44-4

FIGURE 9. Determinatio.i of Horsepower Available
at Altitude, Unsupercharged

HORSEPOER AVAILABLE AT ALTITUDE WITH SUPERCHARGED ENGINE

Most of the present supercharged power plant installations are

made so that the original sea level power is retained up to a certain

fixed altitude, above which the power decreases at the nornal rate.

On our diagram this can be expressed by drawing instead of the previously
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drawn horsepower variation curve a new curve consisting of two

branches: a vertical straight line from point A up to the horizontal

passing through the altitude up to which the sea level power is

preserved and a curve from point C which is obtained by shifting

horizontally the old curve until points B and C coincide. In Fig. 10

the power was assumed to be retained up to an altitude of 10,000 ft.

As the altitude performance on the polar diagram is obtained by an

imaginary shift of the origin of coordinates along a 45-deg line,

to obtain the horsepower available at 10,000 ft, we must shift the

curve of horsepower available at sea level to the right along a

45-deg line by the amount equal to the segment (1).

Horsepower e r
average Horsepower

c/• at 10,000 ft 3 a 3 . , average
r .0 r"at 10,000 ft

HorsepowerHospwr
average A rqie

at sea level D

3 / Bw

Variation cE\aimu
%N. "/r of thp at 10,000 ft

with altitude

A Logn p IF Loghp

LogD LogD

FIGURE 10. Determination of Horsepower FIGURE 11. Determination of Performance
Available at Altitude, Super- at Altitude
charged

PERFORMANCE AT ALTITUDE

To obtain the speed and corresponding horsepower required and

available at altitude, we must bear in mind t;hat by virtue of

construction that instead of a horizontal line passing through W

(as it was done in Fig. 6) it is necessary tc use another horizontal

line such that if WB is parallel to the altitude axis, the segment

WB must be equal to the segment OA where A is the desired altitudc.
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Figure 11 illustrates this for an angle of attack corresponding to

the maximum speed at lu,000 ft. Since the point of intersection

of horsepower required and available curves corresponds to the max-

imum speed, project point E on line BC and OF. Segment OF gives

the magnitudes of horsepower required and available, since in this

case they are equal. Drawing line CD parallel to speed axis, we

obtain the magnitude of the maximum speed given by the segment CD

and point D permits us to interpolate the angle of attack corresponding

to the maximum speed at 10,000 ft.

COMPLETE PERFORMANCE PREDICTION WITH THE AID OF LOGARITHMIC POLAR
DIAGRAM

From the foregoing we are now able to obtain the complete data

on theoretical performance of a new design. We can ascertain the

maximum and stalling speeds for any altitude at which the plane

is capable of flying. By joining the points of maximum speeds

plotted on the corresponding horizontal lines and noting the inter-

section of this new curve with the line tangent to the polar and

parallel to the speed axis (line used to obtain the minimum power

required for flight), we can determine the absolute ceiling.

To obtain the best speeds for climbing and to determine the

excess horsepower, we can make use of the following observation.

From the analyses of a number of airplanes it can be found that the

best speed at which to climb at sea level is usually equal to 0.58

V max. At the ceiling, the planes would fly at a speed corresponding

to the mini.rum power necessary to maintain flight. If we join

by a straight line the point corresponding to the speed equal tQ

0.58 V max., on the horsepower-required curv'e at sea level with

the point of miniMuLM power necessary to fly at the ceiling, the

points of intersection of this line with horse powvr-rquired c -.ves

will define, within the accuracy 0l practical ivquirvments, theo ýS t

speeds for climbing. Knowing thvse speeds, we can obtain th. exc%,ss

horsepower available for climb.
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FIGURE 12. An Example of the Use of the Logarithmic Polar as Employed in
Ro'itine Practice
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We can resort now to standard analytical methods and obtain the

curve of rate of climb and time to climb to different altitudes.

Figure 12 shows an example of the use of logarithmic polar as it is

employed in routine practice.

CONCLUSIONS

The particular advantages afforded by the method described in

the article, in addition to those already mentioned, consist of

compactness of the record and a ready means of estimating slight

changes of design. In many instances lack of time does not allow

an elaborate revision of a performance estimate and in such a case

the logarithmic polar diagram furnishes an easy and rapid estimate of

the effect of changes in weight, parasite resistance, etc. To

the trained eye the graphical picture of the polar gives other valuable

information such as the general efficiency of the design, the approach

to inefficient gross flying weight condition, and such.
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